3.5.65 \(\int x (a+b \log (c (d+e x^{2/3})^n)) \, dx\) [465]

Optimal. Leaf size=89 \[ -\frac {b d^2 n x^{2/3}}{2 e^2}+\frac {b d n x^{4/3}}{4 e}-\frac {1}{6} b n x^2+\frac {b d^3 n \log \left (d+e x^{2/3}\right )}{2 e^3}+\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+e x^{2/3}\right )^n\right )\right ) \]

[Out]

-1/2*b*d^2*n*x^(2/3)/e^2+1/4*b*d*n*x^(4/3)/e-1/6*b*n*x^2+1/2*b*d^3*n*ln(d+e*x^(2/3))/e^3+1/2*x^2*(a+b*ln(c*(d+
e*x^(2/3))^n))

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {2504, 2442, 45} \begin {gather*} \frac {1}{2} x^2 \left (a+b \log \left (c \left (d+e x^{2/3}\right )^n\right )\right )+\frac {b d^3 n \log \left (d+e x^{2/3}\right )}{2 e^3}-\frac {b d^2 n x^{2/3}}{2 e^2}+\frac {b d n x^{4/3}}{4 e}-\frac {1}{6} b n x^2 \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*(a + b*Log[c*(d + e*x^(2/3))^n]),x]

[Out]

-1/2*(b*d^2*n*x^(2/3))/e^2 + (b*d*n*x^(4/3))/(4*e) - (b*n*x^2)/6 + (b*d^3*n*Log[d + e*x^(2/3)])/(2*e^3) + (x^2
*(a + b*Log[c*(d + e*x^(2/3))^n]))/2

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2442

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(f + g*
x)^(q + 1)*((a + b*Log[c*(d + e*x)^n])/(g*(q + 1))), x] - Dist[b*e*(n/(g*(q + 1))), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 2504

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rubi steps

\begin {align*} \int x \left (a+b \log \left (c \left (d+e x^{2/3}\right )^n\right )\right ) \, dx &=\frac {3}{2} \text {Subst}\left (\int x^2 \left (a+b \log \left (c (d+e x)^n\right )\right ) \, dx,x,x^{2/3}\right )\\ &=\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+e x^{2/3}\right )^n\right )\right )-\frac {1}{2} (b e n) \text {Subst}\left (\int \frac {x^3}{d+e x} \, dx,x,x^{2/3}\right )\\ &=\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+e x^{2/3}\right )^n\right )\right )-\frac {1}{2} (b e n) \text {Subst}\left (\int \left (\frac {d^2}{e^3}-\frac {d x}{e^2}+\frac {x^2}{e}-\frac {d^3}{e^3 (d+e x)}\right ) \, dx,x,x^{2/3}\right )\\ &=-\frac {b d^2 n x^{2/3}}{2 e^2}+\frac {b d n x^{4/3}}{4 e}-\frac {1}{6} b n x^2+\frac {b d^3 n \log \left (d+e x^{2/3}\right )}{2 e^3}+\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+e x^{2/3}\right )^n\right )\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 94, normalized size = 1.06 \begin {gather*} -\frac {b d^2 n x^{2/3}}{2 e^2}+\frac {b d n x^{4/3}}{4 e}+\frac {a x^2}{2}-\frac {1}{6} b n x^2+\frac {b d^3 n \log \left (d+e x^{2/3}\right )}{2 e^3}+\frac {1}{2} b x^2 \log \left (c \left (d+e x^{2/3}\right )^n\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*(a + b*Log[c*(d + e*x^(2/3))^n]),x]

[Out]

-1/2*(b*d^2*n*x^(2/3))/e^2 + (b*d*n*x^(4/3))/(4*e) + (a*x^2)/2 - (b*n*x^2)/6 + (b*d^3*n*Log[d + e*x^(2/3)])/(2
*e^3) + (b*x^2*Log[c*(d + e*x^(2/3))^n])/2

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int x \left (a +b \ln \left (c \left (d +e \,x^{\frac {2}{3}}\right )^{n}\right )\right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*ln(c*(d+e*x^(2/3))^n)),x)

[Out]

int(x*(a+b*ln(c*(d+e*x^(2/3))^n)),x)

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 76, normalized size = 0.85 \begin {gather*} \frac {1}{12} \, {\left (6 \, d^{3} e^{\left (-4\right )} \log \left (x^{\frac {2}{3}} e + d\right ) + {\left (3 \, d x^{\frac {4}{3}} e - 2 \, x^{2} e^{2} - 6 \, d^{2} x^{\frac {2}{3}}\right )} e^{\left (-3\right )}\right )} b n e + \frac {1}{2} \, b x^{2} \log \left ({\left (x^{\frac {2}{3}} e + d\right )}^{n} c\right ) + \frac {1}{2} \, a x^{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*log(c*(d+e*x^(2/3))^n)),x, algorithm="maxima")

[Out]

1/12*(6*d^3*e^(-4)*log(x^(2/3)*e + d) + (3*d*x^(4/3)*e - 2*x^2*e^2 - 6*d^2*x^(2/3))*e^(-3))*b*n*e + 1/2*b*x^2*
log((x^(2/3)*e + d)^n*c) + 1/2*a*x^2

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 77, normalized size = 0.87 \begin {gather*} -\frac {1}{12} \, {\left (6 \, b d^{2} n x^{\frac {2}{3}} e - 3 \, b d n x^{\frac {4}{3}} e^{2} - 6 \, b x^{2} e^{3} \log \left (c\right ) + 2 \, {\left (b n - 3 \, a\right )} x^{2} e^{3} - 6 \, {\left (b d^{3} n + b n x^{2} e^{3}\right )} \log \left (x^{\frac {2}{3}} e + d\right )\right )} e^{\left (-3\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*log(c*(d+e*x^(2/3))^n)),x, algorithm="fricas")

[Out]

-1/12*(6*b*d^2*n*x^(2/3)*e - 3*b*d*n*x^(4/3)*e^2 - 6*b*x^2*e^3*log(c) + 2*(b*n - 3*a)*x^2*e^3 - 6*(b*d^3*n + b
*n*x^2*e^3)*log(x^(2/3)*e + d))*e^(-3)

________________________________________________________________________________________

Sympy [A]
time = 54.92, size = 95, normalized size = 1.07 \begin {gather*} \frac {a x^{2}}{2} + b \left (- \frac {e n \left (- \frac {3 d^{3} \left (\begin {cases} \frac {x^{\frac {2}{3}}}{d} & \text {for}\: e = 0 \\\frac {\log {\left (d + e x^{\frac {2}{3}} \right )}}{e} & \text {otherwise} \end {cases}\right )}{2 e^{3}} + \frac {3 d^{2} x^{\frac {2}{3}}}{2 e^{3}} - \frac {3 d x^{\frac {4}{3}}}{4 e^{2}} + \frac {x^{2}}{2 e}\right )}{3} + \frac {x^{2} \log {\left (c \left (d + e x^{\frac {2}{3}}\right )^{n} \right )}}{2}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*ln(c*(d+e*x**(2/3))**n)),x)

[Out]

a*x**2/2 + b*(-e*n*(-3*d**3*Piecewise((x**(2/3)/d, Eq(e, 0)), (log(d + e*x**(2/3))/e, True))/(2*e**3) + 3*d**2
*x**(2/3)/(2*e**3) - 3*d*x**(4/3)/(4*e**2) + x**2/(2*e))/3 + x**2*log(c*(d + e*x**(2/3))**n)/2)

________________________________________________________________________________________

Giac [A]
time = 4.97, size = 82, normalized size = 0.92 \begin {gather*} \frac {1}{2} \, b x^{2} \log \left (c\right ) + \frac {1}{12} \, {\left (6 \, x^{2} \log \left (x^{\frac {2}{3}} e + d\right ) + {\left (6 \, d^{3} e^{\left (-4\right )} \log \left ({\left | x^{\frac {2}{3}} e + d \right |}\right ) + {\left (3 \, d x^{\frac {4}{3}} e - 2 \, x^{2} e^{2} - 6 \, d^{2} x^{\frac {2}{3}}\right )} e^{\left (-3\right )}\right )} e\right )} b n + \frac {1}{2} \, a x^{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*log(c*(d+e*x^(2/3))^n)),x, algorithm="giac")

[Out]

1/2*b*x^2*log(c) + 1/12*(6*x^2*log(x^(2/3)*e + d) + (6*d^3*e^(-4)*log(abs(x^(2/3)*e + d)) + (3*d*x^(4/3)*e - 2
*x^2*e^2 - 6*d^2*x^(2/3))*e^(-3))*e)*b*n + 1/2*a*x^2

________________________________________________________________________________________

Mupad [B]
time = 0.39, size = 74, normalized size = 0.83 \begin {gather*} \frac {a\,x^2}{2}-\frac {b\,n\,x^2}{6}+\frac {b\,x^2\,\ln \left (c\,{\left (d+e\,x^{2/3}\right )}^n\right )}{2}+\frac {b\,d\,n\,x^{4/3}}{4\,e}+\frac {b\,d^3\,n\,\ln \left (d+e\,x^{2/3}\right )}{2\,e^3}-\frac {b\,d^2\,n\,x^{2/3}}{2\,e^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*log(c*(d + e*x^(2/3))^n)),x)

[Out]

(a*x^2)/2 - (b*n*x^2)/6 + (b*x^2*log(c*(d + e*x^(2/3))^n))/2 + (b*d*n*x^(4/3))/(4*e) + (b*d^3*n*log(d + e*x^(2
/3)))/(2*e^3) - (b*d^2*n*x^(2/3))/(2*e^2)

________________________________________________________________________________________